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For several decades, researchers worldwide report a decrease
in fertility in high-yielding dairy cows, most probably based on
conflicting metabolic and reproductive needs. The dairy herd
manager’s success at improving milk production has been
accompanied by a negative trend for the most visible repro-
ductive parameters such as calving intervals, number of days
open and number of inseminations needed per pregnancy. In
parallel, many research groups studied the metabolic and
endocrine factors that influence follicular growth and the
developmental competence of oocytes and embryos. In the
past, herd managers and reproductive biologists each tried to
tackle the same problems with limited consultation. More
recently, the situation has improved significantly and theriog-
enologists, nutritionists and veterinarians now conduct
research in multidisciplinary teams. This review paper starts
in a general way by discussing nutrient prioritization towards
the udder to guarantee milk production and by describing
interactions between the somatotropic and gonadotropic axis.
It then focuses on the consequences of the negative energy
balance on follicular growth and environment, oocyte and
embryo quality, not only by summarizing the currently
accepted hypotheses but also based on clear scientific evidence
at the follicular level. All this, with one question in mind: is
there a mismatch between metabolism and fertility and what
can the dairy manager learn from research to tackle the
problem of reduced fertility?

Introduction

Disappointing reproductive performance in high-pro-
ducing dairy herds is a global problem, characterized as
multifactorial and urged a multidisciplinary approach in
which animal scientists, veterinarians and molecular
biologists were required to unravel the complex patho-
genesis of this ‘subfertility syndrome’. After all, produc-
ing a calf at regular intervals is considered a prerequisite
for profitable lactational performance (Royal et al.
2000; Huirne et al. 2002). After giving birth, the process
of becoming pregnant again in dairy cows starts with
clearance and involution of the uterus followed by
resumption of ovarian activity. This should result in the
completion of the growth of a healthy follicle, enclosing
a competent oocyte, and ultimately in oestrus, ovula-
tion, fertilization and uterine attachment by a viable
embryo. Any upset of these balanced and fine-tuned
biological and mechanical events leads to failing repro-
duction – and this is exactly where the shoe pinches in
our modern dairy herds.

The subfertility syndrome can be divided into two
major sub-problems. First of all, up to 50% of modern
dairy cows display abnormal oestrus cycles postpartum

leading to prolonged calving to first insemination
intervals (Opsomer et al. 1998). In this context, espe-
cially instability within the hypothalamo–pituitary–
ovarian–uterine axis has been studied thoroughly (Lucy
2001; Butler 2003). The concomitant reduced oestrus
expression or even anoestrus, cyst formation and
delayed first ovulation have been extensively docu-
mented (Beam and Butler 1997; de Vries and Veerkamp
2000; Lopez et al. 2004; Vanholder et al. 2006a).
Secondly, attention was focussed on disappointing
conception rates (Bousquet et al. 2004) and the increas-
ingly high incidence of early embryonic mortality
(Dunne et al. 1999; Mann and Lamming 2001; Bilo-
deau-Goeseels and Kastelic 2003). Fertilization of
oocytes from high-genetic merit cows resulted in signif-
icantly lower blastocyst yields in vitro, irrespective of
milk production as such (Snijders et al. 2000). Embryo
quality was also reduced in high-producing dairy cows
compared with non-lactating counterparts (Wiltbank
et al. 2001; Leroy et al. 2005a). A high proportion of
non-viable embryos were found in lactating cows
compared with non-lactating cows (Sartori et al.
2002). Approximately 70–80% of the total embryonic
and foetal losses typically occur during the early
embryonic, pre-attachment period (Santos et al. 2004a)
(for review, see Leroy et al. 2007).

Modern dairy cows, albeit sub-fertile, produce vast
amounts of milk mainly because of significant genetic
improvements, combined with nutritional management
optimized towards lactation. Based on almost
unchanged heifer fertility, we can conclude that the
reproductive processes of modern dairy cattle are
essentially normal when lactation demands are not
imposed (Lucy 2007). Why do modern dairy cows
prioritize milk production at the expense of sustained
reproductive efficiency? In this review, we aim to answer
this question. Are high milk yields and good fertility
outcomes conflicting interests metabolically speaking?

From Phylogenetically Driven to Genetically
Enforced Nutrient Prioritization: The
Consequences on Metabolism

From a biological point of view, it makes sense for
mammals in early lactation to favour milk production
over fertility: this we can refer to as nutrient prioritiza-
tion (Lucy 2003). As nutrition becomes scarce, the
lactating dam will preferentially invest the limited
resources in the survival of living offspring rather than
gambling on the oocyte that is yet to be ovulated,
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fertilized and cared for during an entire gestation. This
maternal catabolic mechanism, also genetically pro-
grammed, should maximize the chance of survival of the
newborn offspring (Silvia 2003). Over the past 40 years,
the focus of dairy industry has been on maximizing milk
yield, thereby creating a ‘nutrient highway’ from the
daily ration and body reserves (estimated on 74% body
fat and 6% body protein: Tamminga et al. 1997) directly
to the udder to sustain milk production.

Nutrient requirements of the gravid uterus late in
gestation impose a catabolic status on the dairy cow.
Following parturition, an additional demand for glu-
cose, fatty acids and protein is established as milk
production starts. During this transition period, cows
are unable to compensate for such increased energy
demands by increasing feed intake, and this results in
negative energy balance (NEB). Drastically reduced
insulin concentrations bring approximate energy mobi-
lization and partitioning of energy to the udder.
Hypoinsulinaemia promotes gluconeogenesis in the liver
(up to 4 kg glucose each day) and acts as a massive
lipolytic trigger. The mobilized non-esterified fatty acids
(NEFAs) serve as an alternative energy source for other
tissues to preserve glucose, which is preferentially used
by the mammary gland to form lactose (Vernon 2002).
NEFAs are predominantly transported to the liver
where they are oxidized to provide energy or trans-
formed into ketone bodies, again an alternative energy
source elsewhere in the body. An aberrant over-load of
the liver by NEFAs can induce steatosis and disturbed
liver function (Herdt 2000). Hormone-sensitive lipases
in adipose tissue of high-yielding dairy cows have an
increased sensitivity to lipolytic stimuli (such as low
insulin, and high catecholamines or glucocorticoids
concentrations). In other words, high-yielding dairy
cows have been genetically selected to partition even
more energy reserves into milk production (Coffey et al.
2004). A higher dietary energy intake will therefore
result in greater milk production, but a similar energy
imbalance remains, with no beneficial effects on body
condition score (BCS) at all (Patton et al. 2006).

A series of biological mechanisms bring an approx-
imate prioritization for milk production at the cost of
body reserves in early postpartum dairy cows. First of
all, the udder benefits because it does not need insulin to
facilitate glucose uptake into cells by the glucose-
transport molecules, GLUT 1 and 3, while most other
tissues predominantly express insulin-dependent GLUT
4 (Zhao et al. 1996). Secondly, using repeatedly intra-
venous glucose-tolerance tests, we recently found a
temporary suppression of pancreatic function in early
postpartum high-yielding dairy cows and this was
correlated with elevated NEFA concentrations (Bossa-
ert et al. 2007). In vitro, high NEFA levels have toxic
effects on pancreatic cells (Cnop et al. 2001; Maedler
et al. 2001). Thirdly, in the early postpartum period, low
insulin concentrations uncouple the growth hormone
(GH)–insulin like growth factor 1 (IGF-I) axis in the
liver because of down-regulation of GH 1A receptors
and this can be restored by increasing insulin (Butler
et al. 2003). As IGF-I production in the liver is
suppressed, the negative feedback of IGF-I is removed
at the level of the hypothalamus ⁄pituitary, and GH

concentrations increase. High GH concentrations not
only stimulate milk production but also provoke liver
gluconeogenesis and lipolysis in adipocytes. The result-
ing high blood NEFA and GH concentrations antago-
nize insulin action and create a further state of
peripheral insulin resistance (Lucy 2007; Pires et al.
2007). In this way even more glucose is conserved to be
available for lactose synthesis.

Fatter cows tend to mobilize more body fat because of
reduced appetite (Garnsworthy and Topps 1982). It is
broadly accepted that genetic selection for milk produc-
tion results in greater BCS loss, further suggesting that
energy is partitioned towards the udder (Roche et al.
2006). An excessive BCS loss during the transition
period is a major risk factor for health and fertility
disorders (Roche et al. 2007), which stresses the impor-
tance of BCS monitoring early postpartum as a man-
agement tool (Chagas et al. 2007).

Interactions Between the Somatotropic and the
Gonadotropic Axis

Extensive scientific research has shown that mechanisms
that regulate energy and nutrient distribution in the
somatotropic system may affect the reproductive system
at different levels of the hypothalamo–pituitary–ovarian
axis (Roche 2006; Chagas et al. 2007). Within the
hypothalamus, interactions between the gonadotropic
and somatotropic systems may occur in the pre-optic
area (Blache et al. 2006, 2007). This region produces the
releasing hormones that control the secretion of both
gonadotropins and somatotropin (Kacsoh 2000). In
addition, it plays a crucial role in integrating appetite
(Wynne et al. 2005), oestrus behaviour (Pfaff 2005) and
sensing of the nutritional status (Wade and Jones 2004).
Consequently, metabolic inputs in the hypothalamus
may have divergent effects on the gonadotropic and
somatotropic axis, i.e. stimulation of GH production
may be accompanied by inhibition of GnRH secretion
(Zieba et al. 2005). The hormones ⁄metabolites that are
most likely to exert a signalling function are glucose and
insulin. Low postpartum insulin and glucose concentra-
tions suppress hypothalamic GnRH secretion and
subsequent pituitary LH release (Diskin et al. 2003;
Ohkura et al. 2004). By activation of specific neurons in
the forebrain, peptides such as neuropeptide Y and
catecholamines are released, which suppress the hypo-
thalamic GnRH pulse generator (Ichimaru et al. 2001;
Diskin et al. 2003; Wade and Jones 2004). Other
metabolic signals may involve leptin and NEFA,
although their role currently remains unclear (Liefers
et al. 2003; Wade and Jones 2004; Amstalden et al.
2005).

At ovarian level, follicular growth and development
seems to be directly influenced by altered insulin, IGF-I,
leptin and NEFA levels. Because insulin locally stimu-
lates follicular growth, maturation and steroidogenesis,
reduced postpartum concentrations are linked to ovar-
ian dysfunction (Gutierrez-Aguilar 1997; Landau et al.
2000; Armstrong et al. 2002a; Butler et al. 2004; Van-
holder et al. 2005a; Kawashima et al. 2007). Long-term
treatment with exogenous bovine somatotropin clearly
increased the number of small follicles (Bols et al. 1998).
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Gong (2002) showed that the beneficial effects of insulin
on ovarian functions are independent of changes in
GnRH ⁄LH release. In ovarian cells, insulin-independent
GLUT-1 and GLUT-3 are the major glucose transport-
ers, while the insulin-dependent GLUT-4 only plays a
supportive role (Nishimoto et al. 2006). Hence, insulin
may exert its effects through mechanisms other than
mediating glucose uptake.

Together with insulin, the IGF system plays an
important role in follicle growth and development by
acting directly on ovarian cells (Spicer and Echternkamp
1995; Gutierrez-Aguilar 1997; Beam and Butler 1999;
Webb et al. 1999; Gong 2002). Consequently, low
circulating IGF-1 concentrations negatively influence
the onset of postpartum ovarian activity and seem
involved in the development of cystic ovarian follicles
(Beam and Butler 1997; Kawashima et al. 2007; Ortega
et al. 2007). The effects of leptin on steroidogenesis and
cell proliferation are, yet, dependent on the circulating
concentrations of IGF-1, LH and insulin (Spicer and
Francisco 1997, 1998; Spicer et al. 2000).

At ovarian level, NEFAs may affect follicular growth
and development by acting directly on follicle cells.
Adding NEFAs in vitro, at concentrations measured in
follicular fluid (FF) during NEB has detrimental effects
on follicle cell viability and function (Leroy et al. 2005b;
Vanholder et al. 2005b, 2006b).

In conclusion, metabolic changes induced by the
somatotropic system to sustain a high milk yield also
affect the reproductive system. By acting at different
levels of the hypothalamo–pituitary–ovarian axis,
altered hormone and metabolite levels exert a negative
effect on follicle growth, development and probably
ovulation.

Consequences for Oocyte Quality

Researchers assume the existence of a carry-over effect
of the adverse metabolic conditions during primary
follicle growth early postpartum on the health of the
pre-ovulatory follicle 2–3 months later (Britt 1992).
Such follicles may be less capable of producing adequate
amounts of oestrogens and progesterone (following
ovulation) and might be doomed to contain an oocyte
of inferior quality (Britt 1992; Roth et al. 2001a). The
developmental capacity of the oocyte is intrinsically
linked to the growth phase and health of the developing
follicle (Bilodeau-Goeseels and Panich 2002; Sutton
et al. 2003; Lequarre et al. 2005). Last but not least, diet
composition can also alter the endocrine and metabolic
micro-environment of the developing oocyte (Boland
et al. 2001; McEvoy et al. 2001; Kenny et al. 2002).

A deviant endocrine environment, because of or as a
consequence of a NEB can alter oocyte quality through
various mechanisms such as spindle formation, pro-
longed follicular growth and resumption of meiotic
progression, all of which has been extensively reviewed
earlier (Leroy et al. 2007). Only a few studies have
examined possible effects of NEB-associated low glu-
cose, elevated b-hydroxybutyrate (b-OHB) or NEFA
concentrations on oocyte quality. Apart from indirect
effects of hypoglycaemia in early postpartum dairy cows
(through an effect on LH secretion or ovarian respon-

siveness to gonadotrophins), hypoglycaemic conditions
(e.g. clinical ketosis) are reflected in the microenviron-
ment of the pre-ovulatory oocyte, and can compromise
the oocyte’s developmental capacity, because glucose is
an indispensable molecule for proper oocyte maturation
(Bilodeau-Goeseels 2006; for review see Sutton et al.
2003; Leroy et al. 2004, 2006). Kruip and Kemp (1999)
suggested possible direct toxic effects of high NEFA
concentrations at the ovarian level of the ovary. Indeed,
in an in vitro maturation model, saturated long-chain
fatty acids, reduced rates of maturation, fertilization,
cleavage and blastocyst formation. Apoptosis, and even
cumulus cell necrosis, during maturation could explain
these observations (Leroy et al. 2005b). Finally, elevated
ammonia and urea concentrations in the FF, because of
an unbalanced diet and protein catabolism were toxic
for the oocyte (Sinclair et al. 2000; De Wit et al. 2001;
Leroy et al. 2004).

Early Pregnancy in High-producing Dairy
Cows: Embryo Quality

Early embryonic death is a major cause of reproductive
failure in dairy cows accounting for up to a total 80%
pregnancy losses (Santos et al. 2004a). There are four
major factors impinging on embryo quality in the
specific case of high-producing dairy cows: gamete
quality, corpus luteum quality combined with the
circulating progesterone concentration, uterine involu-
tion and nutrition. Yet, only those that are related to
NEB will be discussed.

Adverse pre-ovulatory conditions, such as NEB, may
have carry-over effects on embryo metabolism and
viability resulting in early embryonic mortality (Yaakub
et al. 1999; Lozano et al. 2003; Rhoads et al. 2006).
Distinguishing oocyte effects on embryo quality from
post-fertilization influences is extremely difficult. Only at
least a 6-day-old embryo can be transferred to a
recipient to assess the impact of uterine environment
on embryo quality. Lucy (2007) supports the concept
that fertility could be improved in dairy cows by using
embryo transfer and thus circumventing the period of
oocyte and early embryonic development.

Well-timed and balanced post-mating progesterone
concentrations are vital for zygote viability as proges-
terone modulates the endometrial secretions, and thus
optimal uterine receptivity (McEvoy et al. 1995). It has
been suggested that disappointing pregnancy results in
modern dairying are partially caused by the retarded
onset of the progesterone rise and suboptimal proges-
terone concentrations during the luteal phase (Mann
and Lamming 2001). Furthermore, the typical NEB
observed early postpartum can reduce the number of
ovulatory oestrous cycles preceding AI which may
hamper adequate uterus preparation (Butler 2003).
Villa-Godoy et al. (1988) showed that cows in NEB
postpartum had lower progesterone concentrations
during the first three ovarian cycles following calving.
Despite larger volumes of luteal tissue, compared with
non-lactating heifers, maximal progesterone concentra-
tions in lactating cows are lower, possibly because of a
higher rate of degradation in the liver (Sangsritavong
et al. 2002; Sartori et al. 2004; Wiltbank et al. 2006).
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Good postpartum uterine involution, comprising
endometrium repair and evacuation of bacterially
contaminated contents, is of critical importance for
reproductive performance (for review, see Roche et al.
2006). Because of a reduced immune response,
negative energy status can dramatically delay this
process, jeopardizing future fertility (Wathes et al.
2007).

Apart from interest in the consequences of NEB and
associated endocrine and metabolic imbalances, there is
a growing focus towards the effect of milk yield-
promoting diets that are rich in energy and protein
(for review, see Leroy et al. 2007). From these studies we
can learn that optimum nutritional conditions for
follicle growth and ovulation are not compatible with
embryo survival and maintenance of pregnancy
(O’Callaghan and Boland 1999).

Finally, heat stress can cause a reduction in dry
matter intake which prolongs the period of NEB,
decreasing plasma concentrations of insulin, glucose
and IGF-I, while increasing GH and NEFA (Drew
1999; Butler 2001). In addition, there is a direct effect of
heat stress on FSH (increased) and oestradiol
(decreased) plasma concentrations (Wolfenson et al.
1997; Wilson et al. 1998). This causes not only poor
expression of oestrus, but also delayed follicle selection
and thus has potentially adverse effects on oocyte
quality (Roth et al. 2001a,b). Heat stress may further-
more increase uterine temperature by decreasing blood
flow to the uterus. These changes inhibit embryonic
development (Rivera and Hansen 2001), increase early
embryonic loss and reduce the proportion of successful
inseminations (Garcia-Ispierto et al. 2007). The impact
of this heat effect decreases as the embryo develops
(Paula-Lopes et al. 2003).

All the factors described above, potentially affecting
fertility, are diagrammatically presented in Fig. 1.

Some Clues to Modify the Somatotropic Axis in
Order to Generate Acceptable Fertility Results

Tackling the multifactorial problem of subfertility in
dairy cows is a real challenge as the ‘skewed somato-
tropic axis’ described above is not the only reason for

the decline in fertility. Evolving farm systems, growing
herd sizes, increased managerial demands combined
with a reduced labour input per animal and increased
susceptibility to diseases, all interfere with the ability of
the dairy cow to be successfully bred (Mallard et al.
1998). All these factors should be carefully addressed
when formulating management advice to the dairy farm
manager, but this is beyond the scope of the present
paper.

Metabolic disorders (hypocalcaemia, ketosis and
acidosis) and infectious diseases during the puerperium
are all key risk factors for efficient reproductive perfor-
mance (Grohn and Rajala-Schultz 2000; Santos et al.
2004b). Balanced and sophisticated birth management
combined with strict follow-up of cow health status
early postpartum is vital to prevent a drop in the
animal’s appetite. Accurate and repeated assessment of
BCS to estimate changes in body reserves is critical.
Minimizing BCS changes and thus the ‘exhaustion of
the energy reserves’ early postpartum requires an
optimal dietary strategy by reducing energy intake
during the first weeks of the dry period then an
increased energy supply (carbohydrates) shortly pre-
partum (for review, see Overton and Waldron 2004).
Yet, the beneficial effect of extra pre-partum energy on
postpartum energy balance is a matter of debate
(Grummer 2007). Furthermore, adequate dietary mod-
ulations during the demanding early postpartum period
are a promising approach although difficult to achieve
(Grummer 2007). Therefore, Van Knegsel et al. (2007a)
fed on an isocaloric and isonitrogenous basis, a mainly
glucogenic (by-pass starch) or a mainly lipogenic diet
(beetpulp, MEGALAC and palm oil) and showed that
the glucogenic (or ‘insulinogenic’) diet, stimulates energy
partitioning towards body reserves in early lactation.
Cows fed the glucogenic diet had lower NEB and
reduced body fat mobilization, which led to milk fat
depression and less energy partitioned to milk (Van
Knegsel et al. 2007a). In a follow-up study (Van Knegsel
et al. 2007b), multiparous cows fed with glucogenic diet
also had higher plasma insulin concentrations and
tended to resume ovarian activity earlier
(20.4 ± 2.1 days) compared to cows fed with more
lipogenic diet (26.1 ± 2.1 days).
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Fig. 1. Interaction between genetic
selection for milk production and
fertility. The imposed metabolic
and endocrine changes sustaining
milk production in combination
with the increased susceptibility to
heat stress, diseases and subopti-
mal management conditions all
negatively affect reproductive per-
formance of the high-producing
dairy cow
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It is speculated that changes in management are more
likely to have a positive effect on EB. Shortening or even
skipping the dry period improves dry matter intake
peripartum, reduces milk production in early lactation,
improves energy balance and reduces the number of
days postpartum till resumption of ovarian activity
(Gumen et al. 2005; Rastani et al. 2005).

Besides this, growing attention is being paid to dietary
fatty acid content and composition provided by supple-
mented by-pass fats during the early postpartum period.
Not the effect on energy balance as such but improved
steroid secretion and alteration of the fatty acid profile
(more x-3 poly-unsaturated fatty acids), resulting in
modified prostaglandin metabolism (Thatcher et al.
2006). Suppression of milk fat synthesis by supplemen-
tation of rumen-protected conjugated linoleic acids
(trans-10, cis-12) has been suggested to restrict energy
loss through milk (Castaneda-Gutierrez et al. 2005).
Yet, in spite of several recent interesting papers, the
outcome on energy balance and fertility are equivocal.
An extensive description and clear overview of nutri-
tional strategies supporting the metabolic demands
during the transition period are given by Overton and
Waldron (2004) and are beyond the scope of the present
paper.

Finally, genetic selection programmes in the dairy
industry have emphasized milk production traits by
unintended mobilization of cow body reserves. This loss
in BCS is not only dependent on the available mass of
adipose tissue but also on a genetically determined set-
point for BCS. This set-point is correlated with repro-
ductive outcome (Lucy 2007). Therefore, not only
fertility traits as such (Royal et al. 2000), but also
variables comprising changes in BCS early postpartum
should be included in genetic selection criteria.

Conclusions

Intense selection for milk production has resulted in an
immense priority for the high-producing dairy cow to
partition energy to milk, at the cost of body reserves.
This has resulted in excessive NEB and poor reproduc-
tive performance. Thus, milk production and reproduc-
tive performance have conflicting interests in
high-producing dairy cows. Metabolites and metabolic
hormones associated with energy prioritizing for milk
production (NEFA, insulin, glucose, IGF-1, b-OH)
influence fertility, indirectly by modulating the somato-
tropic ⁄gonadotropic axis, as well as directly at the
ovary, follicle or uterine environment. Strict follow-up
peripartum to monitor health and BCS loss and direct
treatment of (infectious or metabolic) disorders in early
lactation will limit fertility disorders postpartum. Fur-
thermore, a series of promising management, genetic
selection and nutritional strategies have been proposed,
which have the potential to shift the somatotropic axis
prioritizing energy partitioning of milk to a somatotro-
pic axis with an increased priority for body reserves to
improve fertility. Yet, research in this area is limited.
Exploring such strategies, comparing their benefit or
even combining two or more strategies is an extremely
interesting area of research, and essential to improve
health and welfare of the modern dairy cow.
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2006: Changes in reproductive physiology of lactating dairy
cows due to elevated steroid metabolism. Theriogenology
65, 17–29.

Wolfenson D, Lew BJ, Thatcher WW, Graber Y, Meidan R,
1997: Seasonal and acute heat stress effects on steroid
production by dominant follicles in cow. Anim Reprod Sci
47, 9–19.

Wynne K, Stanley S, McGowan B, Bloom S, 2005: Appetite
control. J Endocrinol 184, 291–318.

Yaakub H, O’Callaghan D, Boland MP, 1999: Effect of
roughage type and concentrate supplementation on follicle
numbers and in vitro fertilisation on follicle numbers and in
vitro fertilisation and development of oocytes recovered
from beef heifers. Anim Reprod Sci 44, 1–12.

Zhao F, Dixon WT, Kennelly JJ, 1996: Localization and gene
expression of glucose transporters in bovine mammary
gland. Comprehens Biochem Physiol 115, 127–134.

Zieba DA, Amstalden M, Williams GL, 2005: Regulatory
roles of leptin in reproduction and metabolism: a compar-
ative review. Domest Anim Endocrinol 29, 166–185.

Author’s address (for correspondence): J Leroy, Laboratory for
Veterinary Physiology, Department of Veterinary Sciences, Faculty
of Pharmaceutical, Biomedical and Veterinary Sciences, University of
Antwerp, Universiteitsplein 1, Gebouw U, B-2610 Wilrijk, Belgium.
E-mail: jo.leroy@ua.ac.be

Conflict of interests: All authors declare no conflict of interests.

Nutrient Prioritization and Fertility in Dairy Cows 103

� 2008 The Authors. Journal compilation � 2008 Blackwell Verlag


