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The environment in which humans live is 
diverse and provides many different physical 
and (bio)chemical challenges to the human 
body. Although we view the genome as a static 
library of genes, variability between individu-
als is observed as a result of, for example, single 
nucleotide polymorphisms [1] and epigenetic 
changes [2]. This variability results in great diver-
sity in our appearance, how we act and how we 
respond to environmental and other stimuli. 
The complex interaction of the human genomes 
and their environment are imprinted in the col-
lection of xenobiotics and biochemicals in the 
human body; this constantly changing dynamic 
picture of interaction is defined as the pheno-
type. Clearly, the phenotype of each individual 
is different and there is large inter- and intra-
individual variability. To statistically define the 
large phenotypic variability in the human popu-
lation there is the requirement to sample large 
numbers from that population; generally hun-
dreds or thousands of subjects are investigated 
to acquire a statistically robust result, depending 
on the fold change observed, the study’s objec-
tive and experimental design. Only in specific 
examples, where the genetic and environmental 
variability is controlled to a significantly higher 
level (e.g., rodent models of disease applied in 
the laboratory [3] or in studies collecting multiple 
time-point samples from the same subjects [4]), 

can lower sample numbers be used. Even with 
careful selection of a suitably large and represen-
tative cohort of individuals, there are numerous 
additional sources of bias (otherwise known as 
confounding factors) that can lead to failure to 
discover anything of true significance, or more 
seriously, report spurious findings that prove 
impossible to validate. Collection of data related 
to demographic, lifestyle and physiological fac-
tors (e.g., diet, gender, ethnicity, age and BMI) 
can assist in identifying confounding factors 
and ensuring the appropriate data can be incor-
porated into the experimental design and data 
analysis processes.

The quantitative collection of endogenous 
and exogenous metabolites, defined as the 
metabolome, provide an appropriate route to 
determine the phenotype(s) of individuals or 
populations and can be defined as the metabo-
type [5]. The study of the metabolome is defined 
as metabolomics and has been reviewed recently 
with a focus on mammalian investigations [6]. 
In humans the metabolome is large; the Human 
Metabolome Database is the most comprehen-
sive definition of the human metabolome and 
describes approximately 7900 metabolites [7], 
although other less common metabolites, com-
plex lipids and exogenous metabolites are cur-
rently not described [6]. The metabolome is the 
final downstream product of gene transcription 
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and protein translation and so closely defines 
the phenotype [8]. The dynamics of the human 
body are mirrored in the metabolome; for 
example, after eating a meal the quantitative 
composition of blood and urine metabolomes 
change in timescales of minutes to hours [9]. 
The holistic investigation of the metabolome 
allows high-throughput studies to be performed 
at a relatively low cost per sample in compari-
son with transcriptomics and proteomics [6]. 
Metabolomics has been applied to investigate 
how lifestyle (e.g., exercise [10]) and the environ-
ment (e.g., food intake [11]) impact on humans, 
how we develop diseases [12] and to develop prog-
nostic or diagnostic biomarkers or risk factors 
[13,14]. In small studies, biofluids [15], cells [16] 
and tissues [17,18] are applied; the limited number 
of samples collected does not place too high a 
demand for skilled and coordinated collection 
for the more difficult to collect samples, most 
notably tissues. In large-scale studies involving 
hundreds to thousands of different subjects, it is 
technically demanding to collect tissue and/or 
cell samples, although tissue banks are being 
constructed; therefore, most studies involve the 
investigation of biofluids as these are easily col-
lected. Common biofluids studied include blood 
plasma [13,14] and urine [19].

Metabolomic studies are operated with one 
of three different analytical strategies: targeted, 
semi-targeted and untargeted metabolomic 
studies [6]. Targeted methods study a limited 
number of predefined metabolites (typically 
fewer than 20) with high levels of specific-
ity, precision and accuracy to define absolute 
amounts of each metabolite. For example, the 
quantitation of amino acids using LC–triple-
quadrupole MS [20]. Semi-targeted methods 
apply the same or different analytical plat-
forms to quantify predefined metabolites, but 
the number of metabolites studied is increased 
to the low hundreds [13,21]. Untargeted meth-
ods define the relative concentrations of hun-
dreds or thousands of metabolites with fit-
for-purpose precision, although with a lower 
analytical specificity. The metabolites are not 
predefined and the identification of biologically 
important metabolites is performed post-data 
acquisition, which is a significant bottleneck 
[22]. The method applied is highly dependent 
on the study objectives and available analytical 
platform(s). In true discovery studies, where the 
biologically important metabolites defining the 
phenotype are not known, untargeted studies 
provide the greatest opportunity to identify 

unexpected changes through the application 
of methods that detect the largest number of 
metabolites. ���������������������������������One advantage of untargeted stud-
ies is the ability to observe changes in unknown 
metabolites or in metabolites not commonly 
reported or detected. In untargeted studies, 
data provide relative comparisons between 
samples (metabolite concentrations are not 
reported) compared with targeted studies that 
provide quantitative data related to metabolite 
concentrations. Whichever analytical strategy is 
used, significant attention to detail and quality 
assurance (QA) is required for all analytical 
strategies (targeted and untargeted), especially 
for large-scale studies.

The most frequently applied analytical 
platforms in������������������������������    untargeted metabolomics stud-
ies are NMR spectroscopy [10,19] and MS via 
direct injection, or more commonly hyphen-
ated to a chromatographic technique, such as 
GC–MS [23,24] and LC–MS (along with asso-
ciated developments including UPLC) [14,23]. 
MS and NMR platforms provide advantages 
and limitations in their application in metabo-
lomic studies, as has been previously discussed 
[6]. The integration of multiple analytical plat-
forms provides greater scientific power to these 
studies [6,23]. Until recently, NMR spectroscopy 
was the chosen analytical platform for large-
scale untargeted studies; the platform provided 
reproducible data across multiple analytical 
experiments [19,25]. MS could not provide this 
reproducibility ������������������������������� in large-scale untargeted stud-
ies composed of many hundreds or thousands 
of sample analyses, although������������������ was operated rou-
tinely in small- and large-scale targeted studies 
and small-scale untargeted studies. In targeted 
studies, comparison of data to calibration curves 
in each separate analytical experiment provided 
reproducible and quantitative data that could 
be easily integrated across different analytical 
experiments. However, in the last 5 years the 
development of innovative experimental pro-
tocols and data processing methodologies has 
allowed GC–MS and UPLC–MS to be applied 
in large-scale untargeted studies of the human 
population [23,26]. All untargeted metabolomics 
studies should apply analytical methods that 
have been developed and validated to provide 
reproducible and robust data. A number of pro-
tocols have been published that have defined 
in accurate detail technical aspects including 
sample preparation and chromatography–MS 
operation (e.g., routine maintenance). This 
important aspect of any analytical study will 

Key Terms

Experimental design: 
Design of a study to acquire 
data related to a specific 
biological question while 
ensuring that covariants or 
confounders are not present or 
are well characterized. 

Metabolome: The total 
qualitative and quantitative 
collection of metabolites 
present in a defined sample. 
Many metabolomes are present 
in the human body including the 
serum, urine, endothelial cell 
and liver tissue metabolomes.

Untargeted metabolomic 
studies: Holistic study of 
crude sample extracts applying 
chromatography and/or MS or 
NMR spectroscopy with limited 
a priori knowledge of 
metabolome composition; 
applied in discovery studies.

Quality assurance: Planned 
process activities to ensure the 
quality of data produced meets 
a specified acceptance level.
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not be discussed further here and the reader is 
directed to a number of protocol papers for fur-
ther information (for serum/plasma and urine 
see [23,27]).

In this article we will discuss, with a focus on 
untargeted and large-scale studies: 
n	The difficulties of applying chromatography 

and MS platforms to large-scale metabolomics 
studies;

n	The importance of experimental design;

n	The integration of QC samples into studies 
and their role in QA;

n	The importance of robust data preprocessing. 

All of these factors, rather than a single fac-
tor, are important in performing robust and 
biologically significant large-scale, MS-focused, 
untargeted metabolomics studies of the human 
population.

Categories of large-scale metabolomic 
studies in the human population
Metabolomic studies of the human popula-
tion usually fall into three basic categories: 
predictive biomarker discovery, with the aim 
of translation into diagnostic/prognostic tests; 
pathogenesis studies, where the aim is to 
uncover mechanism of disease; or association 
studies, where the aim is to find correlations 
between the human metabolome and factors 
such as demographic, lifestyle and physiological 
factors. 

It is important to understand that although 
all three of these study categories may be based 
on identical core patient populations and 
involve similar biological samples, the study 
designs may differ considerably. There is a huge 
difference between uncovering a statistically sig-
nificant association between a biomarker and 
disease compared with finding a biomarker of 
disease with the potential to be useful as a dis-
criminator in a clinical setting. An odds ratio of 
approximately two may be sufficient to suggest 
an association that may help elucidate disease 
etiology or pathogenesis; whereas, it is realistic 
to expect an odds ratio in the region of >20 
(or an associated AUC of >0.9) for a diagnos-
tic biomarker [28]. That said, in multifactorial 
diseases, it is often the combination of multiple 
‘weak’ individual markers into a single ‘strong’ 
multivariate model that provides the required 
high levels of discrimination. Unfortunately, 
the use of multivariate methodologies can eas-
ily be abused, with the very high possibility 

of over-fitting to random associations, thus 
giving a false impression of the true predic-
tive ability of the candidate biomarker signa-
ture. Careful cross-validation procedures are 
imperative [29,30].

When a multivariate biomarker is expected, 
then a structured design of the experiment is 
necessary and important. Studies need to be 
sufficiently powered to produce meaningful 
measures of specificity and sensitivity and the 
use of cross-validation procedures means that 
test subjects need to be carefully selected to 
ensure that they are sufficiently homogeneous 
with regard to demographic/lifestyle/physi-
ological factors (e.g., sex, ethnicity, age and 
BMI) such that hold-out sets (a representative 
selection of the complete dataset, typically 
10–30% of samples) applied in model valida-
tion are equally representative [29]. In addi-
tion, data on potential confounding factors 
between cases and control should also be col-
lected and incorporated into the study design 
and subsequent statistical analysis. If all the 
above considerations are effectively applied, 
it is inevitable that the size of discovery-phase 
studies must grow. For example, if we consider 
the power calculations alone using the standard 
inferential approach described by Arkin and 
Wachtel [31], for a study in which we hypoth-
esize that a clinically effective screening test 
will be observed to have a sensitivity of at least 
0.85 with a corresponding specificity of 0.95, 
and assuming a 95% CI in sensitivity of ±0.05 
is sufficiently precise, we will require 195 cases. 
If, in addition, we match four controls to each 
case to ensure good representation of the tar-
get population for cross-validation, then the 
number rapidly increases to 780 patients. 

For association studies, again sample num-
bers need to be large. Here, the aim of a given 
study may be to find subtle, but significant, 
associations between disease, clinical fac-
tors and the metabolome. Basic statistical 
theory dictates that as the size of the main 
effect decreases, the number of measured sub-
jects needed for that effect to be significant 
increases nonlinearly. In addition, if modern 
methods for correcting for confounding fac-
tors are used, such as logistic regression, the 
number of required subjects increases again, 
particularly for categorical confounders such 
as gender or ethnicity. In order for such studies 
to be clinically relevant, they also have to be 
cross-sectional (i.e., subjects need to be repre-
sentative of the population from which they are 
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sampled). Indeed, study design must follow the 
robust protocols set out by the epidemiology 
community [32], where studies typically involve 
many thousands of subjects.

What are the factors to consider in 
the experimental design of large-scale 
untargeted metabolomics studies?
The appropriate design of scientific studies is 
critical to ensure robust scientific conclusions 
are reached. By definition, experimental design is 
the plan constructed to perform data-gathering 
studies; in other words, providing the appropri-
ate foresight to plan a study to ensure that the 
variation related to the biological observations 
are significantly greater than process variation 
– the variation introduced by performing the 
study. Without foresight and design, large exper-
imental datasets can be acquired that provide 
no relevance to the biological objectives or that 
provide data wthat are not robust and can lead 
to false observations and biological conclusions. 

�� Reproducibility of sample collection  
& preparation across single or multiple  
sites & over long periods of time
In studies of the human population, samples 
are frequently collected at multiple sites either 
within one country or across different countries 
and continents. It is common that two separate 
researchers will collect and process a sample 
differently unless the sampling and processing 
steps are clearly defined in a standard operat-
ing procedure (SOP) and the users are fully 
trained. Differences in how samples are col-
lected, processed, stored and transported have 
the potential to impact on the metabolic profile 
determined [33]. This is especially true for blood 
serum and plasma, which, in comparison with 
urine, contain concentrations of enzymes that 
provide the capability for metabolism to oper-
ate post sample collection. Without the appro-
priate quenching of metabolism, the metabolic 
profile of the sample analyzed will differ to the 
metabolic profile of the sample at the time of 
collection. Therefore, the application of a single 
validated SOP and training across all sampling 
sites is essential to minimize any intra- or inter-
researcher and inter-site process variation and 
its impact on the metabolic profile. Validation 
of sample collection and transport SOPs for 
large-scale population sampling have been per-
formed and indicate that with appropriate pro-
cesses in place the variation introduced during 
the processing and transport of samples is small 

compared with the inter-individual variation 
associated with the subject samples [34,35].

It is recommended that sample tubes from 
a single manufacturing batch are applied for a 
complete study where possible and that chemi-
cal contamination checks of a random selec-
tion of tubes are performed to ensure that no 
chemicals are present that can interfere with the 
assays applied [23]; most chemical contaminants 
are low-molecular weight species with similar 
chemical and physical properties to metabolites. 
In ‘case–control’ studies, it is often tempting to 
use control samples from a previous or indepen-
dent study in which collection procedures are 
unknown, and therefore cannot be duplicated 
for collecting case samples. This is not recom-
mended as it introduces a potential bias that is 
impossible to correct for in subsequent statistical 
analysis.

In large-scale studies, samples are collected 
across a single or multiple sites and are then 
transported to a single center to perform the 
metabolomics research. When the sample size 
is large (typically n > 100), the biological study 
is divided into smaller analytical experiments 
with each experiment comprising sample prepa-
ration, data acquisition and data preprocessing. 
The complete set of analytical experiments can 
be performed across weeks, months and years. 
Therefore, and as for sample collection, SOPs 
and training for all researchers involved is essen-
tial to ensure minimal variation is introduced 
during the sample preparation process, as well 
as subsequent steps, which are discussed below. 
Without these steps to control variability, intra-
experiment variance (where one person per-
forms the sample preparation on a single day) 
will be small, but inter-experiment variability 
(performed on different days/weeks/months 
and potentially by more than one researcher) 
can be large. The SOP should accurately define 
volumes, times and temperatures to apply in 
sample preparation.

�� The requirement for multiple analytical 
experiments & routine MS maintenance 
In untargeted studies applying MS, where the 
sample population is large (hundreds to thou-
sands of samples), analysis of all samples can-
not be achieved in a single analytical experi-
ment. To achieve an appropriate analysis of the 
sample, the large biological study is divided 
into smaller analytical experiments, typically 
comprising 50–150 samples. Data from these 
multiple analytical experiments are combined 

Key Term

Standard operating 
procedure: Written 
procedure available to all 
scientists to allow experimental 
tasks to be performed at 
different sites and by different 
people following suitable 
training.
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post data acquisition. This requirement to 
divide the biological study into smaller analyti-
cal experiments is necessary because of the drift 
in chromatographic and mass spectrometric 
performance over time [36]. Samples are ana-
lyzed following minimal sample preparation, 
are complex and contain high levels of matrix 
components and metabolites. Matrix compo-
nents and metabolites physically interact with 
chromatography and MS platforms and are the 
primary reason for degradation in analytical 
performance. Typically, the greatest issue is a 
change in sensitivity (normally a decrease) as 
sample components aggregate in the GC injec-
tor (affecting volatilization of metabolites) or 
electrospray ion source (affecting ion transmis-
sion from atmospheric to vacuum regions of the 
MS). The build-up of matrix and metabolites on 
GC and UPLC columns can also cause changes 
in chromatographic performance and introduce 
variability in retention-time data. Lipophilic 
metabolites (e.g., triglycerides and phospho
lipids) can accumulate on reversed-phase UPLC 
columns and hydrophilic metabolites (e.g., salts 
at high concentrations, including phosphate and 
ammonium) can accumulate on HILIC col-
umns. Other non-sample-based effects include 
drift of operation of electronic components and, 
for example, its influence on mass calibration.

‘Drift’ or variability in measured variables 
(response, m/z and retention time) is low in 
the first 100–150 injections following routine 
maintenance, but generally becomes significant 
after this point depending on the sample type 
and the analytical method applied (examples 
for UPLC–MS can be observed in [36,37]). The 
authors recommend multiple injections (up to 
150) of the same sample (this can be a QC sam-
ple) when developing a new analytical method 
or analyzing a new sample type to ascertain the 
appropriate number of injections before the deg-
radation in instrument performance is unaccept-
able. An example for a single metabolite, trypto-
phan, present in plasma and analyzed applying 
UPLC–MS is shown in Figure 1. Without rou-
tine maintenance (as described below) the vari-
ability introduced into the data during sample 
analyses will become significant and will equal 
or be greater than inherent biological variabil-
ity in the dataset. In NMR spectroscopy, where 
samples are introduced into the spectrometer in 
sealed glass tubes, there is no sample–instru-
ment interaction resulting in the ability to ana-
lyze large sample numbers in a single analytical 
experiment without a requirement for routine 

instrument maintenance. However, degradation 
of sample extracts present in an autosampler for 
many days has to be considered in an appropriate 
experimental design for studies applying NMR 
spectroscopy.

Due to the build-up of sample components 
and low-level instability in electronic systems, 
routine maintenance of chromatography and 
MS platforms is performed to return the instru-
ment to optimal or near-optimal performance. 
For GC–MS, this will involve replacing injector 
liners and gold seals, removal of the top 5–20 cm 
of the column to eliminate contamination and 
tuning/calibrating the MS. For UPLC–MS 
this involves cleaning the UPLC column and 
electrospray source components to remove 
contamination and tuning/calibrating the MS.

Applying multiple analytical experiments of 
an appropriate number of injections and routine 
instrument maintenance ensures that the within-
experiment variability introduced is small com-
pared with the biological variability in the sam-
ples being studied. In the following sections, we 
will discuss the role of QC samples in determin-
ing the precision for each metabolite/metabolic 
feature detected. However, routine maintenance 
does not necessarily return the instrument to the 
same level of operation as observed at the start 
of the previous analytical experiments and that 
would allow simple integration of data from dif-
ferent experiments. Step changes in response can 
be observed between analytical experiments per-
formed on alternate days. Larger step-changes 
can be observed after annual maintenance of 
instruments. This introduces significant lev-
els of analytical variation into the dataset and 
has a large impact on the quality of the data. 
However, the recent integration of data from QC 
samples and the development of innovative data 
preprocessing algorithms have enabled, for the 
first time, the robust integration of data from 
multiple analytical experiments. This will be 
discussed below.

�� Randomization of sample preparation  
& analysis
In human studies, sample collection is not ran-
domized in relation to many different sources of 
variability in the human population, including 
age and gender as two examples. Samples are 
collected as the subjects attend a collection site 
and this is not generally controlled. However, it 
is recommended that investigators subsequently 
randomize both sample preparation and sam-
ple analysis orders in small- and large-scale 
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studies [6]; samples should be randomized and 
blinded to the analyst before chemical analysis 
to ensure that no bias is introduced at this stage 
by the analyst and, therefore, reduce the chance 
of time-of-analysis becoming a confounding 
factor. Randomization is performed to ensure 
that there is no correlation between demo-
graphic/lifestyle/physiological factors (e.g., 
gender, ethnicity, age and BMI) and prepara-
tion or analysis order. Any correlation could 
introduce bias into the study. Appropriate ran-
domization of samples ensures that no bias is 
introduced as part of sample preparation and 
data acquisition. For example, randomization 
should ensure that an even distribution of male 
and female subject samples across the analytical 
experiment is present. If all or a large propor-
tion of the male subject samples were analyzed 
first, then changes in MS response over time 
will impact differently on the data acquired for 
the subpopulations of female and male subjects. 
This highlights the importance of collecting 
meta-data related to demographic/lifestyle/

physiological factors during sample collection 
to allow the assessment of bias, but also that 
data related to confounding factors can be 
incorporated into the experimental design and 
statistical analysis.

In large-scale studies involving multiple ana-
lytical experiments, valid randomization within 
and between analytical experiments is essential. 
The distribution of subjects across the single 
biological study should be closely represented 
in each analytical experiment, where possible, to 
ensure that bias is not introduced. For example, 
if the male:female ratio in the biological study 
is 60:40 then this same ratio should be present, 
to an approximation, in each analytical experi-
ment. In studies involving thousands of samples, 
data acquisition may be required to commence 
before sample collection is completed. Here it is 
recommended that randomization is performed 
and that the distribution of subject samples in 
each analytical experiment matches that of the 
currently collected study samples as closely as 
possible. In larger studies, with sample and data 
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Figure 1. A plot showing the UPLC–MS peak area of tryptophan for the replicate injection 
of a single QC sample pooled from metabolic footprint samples acquired from the culture 
of placental tissue. A Waters Acquity UPLC™ system coupled to a Thermo Scientific LTQ Orbitrap 
Velos™ MS was applied to acquire the data using a previously defined method [23]. The data 
representing the first ten equilibration injections have been removed from these data. The data 
show the low level of variance present for the first 120 samples followed by a significant 
degradation in the stability of the peak following 120 samples.
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collection performed over months or years, then 
constraints can be applied. For example, a maxi-
mum period of time between sample collection 
and data preparation or data acquisition can 
be applied to ensure sample instability is not a 
concern in studies performed over many years.

It is important to note that in any human 
metabolomic study, either small or large, it 
is appropriate to statistically assess the pro-
posed experiment design for confounding 
factors before proceeding with its execution. 
Often simple randomization is not sufficient 
to avoid imbalance within, and between, ana-
lytical batches. This is particularly true for low-
prevalence outcomes where the proportion of 
‘case’ samples is small. It may be appropriate to 
perform stratified proportional randomization. 
That is, separate the subjects into groups based 
on outcome, and then randomly pick samples 
from each group in proportion to the number 
of members in each group. For example, for an 
unbalanced case–control study with four con-
trols for each case, the sampling protocol will 
randomly select (without replacement) four 
subjects from the control group followed by 
one subject from the case group. This process 
is then repeated until all subjects have been 
selected and, therefore, ordered. For studies 
with a population containing a heterogeneous 
mixture of demographic/lifestyle/physiologi-
cal factors, it may be necessary to repeat the 
selection and confounder assessment process 
multiple times, until a suitably balanced design 
is achieved. Alternatively, a nested stratified 
proportional randomization procedure can be 
used; for example, in a multicenter study it is 
recommended to ensure that both outcome 
and center are evenly stratified across the ana-
lytical experiment. In this case, the subjects are 
grouped into multiple outcome/center groups 
before proportional random selection. 

�� QC samples & QA
In simple terms, QA is a process followed to 
statistically assess the performance of a process 
and to ensure the process meets predefined 
acceptance criteria. In targeted analytical stud-
ies applying MS platforms, accuracy (or recov-
ery) and precision are calculated to determine 
the quality of the data and assess whether it 
meets the acceptance criteria defined before the 
experiment started. This is a regulatory body 
requirement in many industries, including phar-
maceuticals (see the US FDA guidelines for an 
example [38]). QC samples are routinely applied 

in these targeted experiments to enable accuracy 
and precision to be monitored. However, the 
inclusion of QC samples into untargeted metab-
olomics studies applying MS platforms is cur-
rently limited. The authors highly recommend 
their inclusion in untargeted studies to enable 
QA processes to be implemented [23,39] as well 
as to provide capabilities to improve the qual-
ity of data in combination with data processing 
algorithms [23]. QC samples can also be applied 
to assess metabolite recovery during sample 
preparation procedures and to assess variability 
introduced by different analysts, although these 
will not be discussed further here; QC samples 
will be discussed in detail below.

What are QC samples?
QC samples, in the context of metabolomics, 
should be representative of the qualitative and 
quantitative composition of the subject samples 
being analyzed in the study; ideally they are an 
average of the composition of all samples stud-
ied. In analytical experiments a QC sample (of 
the same composition) or samples (each with 
a different composition) are analyzed inter-
mittently. In untargeted studies, a single QC 
sample is analyzed and as the composition of 
each sample injected is equal, in theory, all 
data acquired for QC samples should be iden-
tical [26]. However, small levels of variation 
are introduced during the analytical process 
(e.g., injection volume or ion-transmission 
efficiency), which leads to minor and random 
variation being observed in the data obtained 
for the QC samples. These data can be applied 
in QA processes to ensure the data acquired are 
fit for purpose or meet predefined acceptance 
criteria.

In untargeted metabolomic studies, QC 
samples were, and still are, primarily applied to 
assess and ensure that the analytical processes 
being performed are appropriate and meet pre-
defined acceptance criteria. In simple terms, 
QC samples are applied to ensure that the data 
acquired are of a suitable quality for data ana
lysis to be performed and can produce valid 
and robust datasets and biological conclusions 
[23,27,39]. A single ‘pooled’ QC sample is applied 
for a complete biological study with aliquots of 
this sample processed through sample prepara-
tion, data acquisition and data preprocessing. 
The variation in the data acquired from differ-
ent aliquots of the pooled QC sample reflects all 
process variations from the point of QC sample 
introduction; typically, sample preparation, 
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data acquisition and data preprocessing steps 
are assessed. Although the primary applica-
tion of QC samples is to assess process varia-
tion, they are also applied to fulfill other roles 
in data acquisition and data preprocessing and 
these will be discussed below.

�� Preparation of pooled QC samples
A QC sample should qualitatively and quantita-
tively mimic the sample matrix and metabolite 
composition of the samples to be investigated 
in the scientific study. As the QC sample closely 
represents the study samples, any technical 
variation introduced during sample preparation, 
data acquisition and data preprocessing will be 
represented in the data acquired for the QC 
samples. It is important that the qualitative and 
quantitative composition is mimicked as closely 
as possible to allow representative measures of 
process variation to be assessed; in cases where 
the sample composition is not mimicked, then 
differences in the variation introduced by matrix 
components may not represent variation intro-
duced into the data acquired for the study sam-
ples. One example is the presence or absence of 
phospholipids in UPLC–MS analysis of serum 
and plasma and the influence these have on sen-
sitivity, specificity and process variation [40]. If 
the study samples do, and the QC sample do not, 
contain high concentrations of phospholipids, 
then variation introduced into the data acquired 
for study samples will not be represented in the 
data acquired for QC samples.

The preparation of a QC sample is dependent 
on the sample type, availability and the size of 
the scientific study. In all studies, preparation of a 
pooled QC sample applying small aliquots from 
each study sample is most appropriate. If not 
feasible, the purchase of matrix-matched samples 
that still mimic the qualitative and quantitative 
composition, but with a lower accuracy than a 
pooled QC sample, is recommended [23,35].

The majority of large-scale studies of the 
human population involve the study of bioflu-
ids, generally blood plasma, serum or urine. 
The preparation of a single pooled QC sample 
applying biofluid samples from a small study 
(n < 100) is relatively simple: small aliquots 
of each study sample are combined and thor-
oughly mixed to prepare a pooled QC sample 
[23,26,27]. Aliquots of this pooled sample can be 
applied to prepare multiple QC samples to be 
analyzed in the analytical experiment. Identical 
SOPs are applied for the preparation of study 
and QC samples. For example, for the study 

of serum collected from 100 subjects, pooling 
of 50 µl aliquots of serum from each subject 
will be sufficient to prepare a single pooled 
QC sample appropriate for a single analytical 
experiment. For small studies, this is easy to 
perform as all study and QC samples will be 
prepared on the same day, with QC samples 
prepared after study samples. This ensures that 
study and QC samples are passed through a 
single freeze–thaw cycle. 

For studies involving hundreds to thousands 
of study samples, sample preparation cannot be 
completed in a single day, but will be separated 
across multiple days. In these cases, aliquots 
from each study sample should be collected 
for each day to prepare a pooled QC sample 
and then be stored frozen. A separate pooled 
sample will be collected on each day. Once all 
study samples are prepared then different QC 
aliquots collected on each separate day can 
be pooled and thoroughly mixed to prepare a 
single pooled QC sample. Although appropri-
ate, this process does provide a discrepancy in 
the number of freeze–thaw cycles: one cycle for 
study samples and two cycles for the pooled QC 
sample. This, although unproven, may provide 
a separate source of bias between study and QC 
samples. 

In large studies involving thousands of sub-
jects, with samples to be collected and analyses 
to be performed over many months or years, 
the preparation of a pooled QC sample for 
the complete study becomes difficult. In these 
studies it is common for analyses to start before 
all the samples have been collected. Therefore, 
the preparation of a pooled QC sample from 
all subject samples is not feasible. One solution 
is to collect aliquots from the first ‘n’ subjects, 
pool and thoroughly mix to provide a pooled 
QC sample that can be used for the complete 
study. This solution assumes the distribution 
of subjects in the first ������������������������n����������������������� samples is representa-
tive of the complete sample population. This is 
acceptable when the number of subject samples 
applied to construct the pooled QC sample is 
large (n > 500) and the first subjects recruited 
are randomized and representative of the com-
plete scientific study. An alternative solution is 
to purchase a commercially available biofluid 
sample and apply as the pooled QC sample for 
the complete study. For example, human serum 
can be purchased from commercial suppliers 
[23,36]. If this solution is applied, the authors 
suggest that the large volume pooled QC sam-
ple is subaliquoted into suitable fractions at the 
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start of the study and stored frozen. Sample 
preparation for each aliquot is then performed 
at the same time as study sample preparation for 
a specific analytical experiment. This is prefer-
able to ensure that the pooled QC is passed 
through two and not many freeze–thaw cycles, 
and the length of storage of QC samples before 
extraction is similar to the length of storage of 
study samples before extraction (i.e., to elimi-
nate the possibility for QC samples to be stored 
before extraction for less than 2 months, while 
study samples are stored before extraction for 
longer than 12 months). 

For all of the processes described above the 
pooled QC sample is processed through the 
steps of sample preparation, data acquisition 
and data preprocessing. The variation deter-
mined in the QC data is a summed represen-
tative of variation introduced by all of these 
processes; it is difficult to isolate one source of 
variation from another by applying these QC 
samples. Also, the processes are only achiev-
able where sufficient supplemental volumes of 
biofluids are available and can be applied to pre-
pare a pooled QC sample. In studies investigat-
ing samples with limited availability (including 
bile, tears and interstitial fluid as examples), the 
preparation of a pooled QC sample is extremely 
difficult and their purchase from commercial 
suppliers is limited. In these cases the applica-
tion of a synthetic QC sample or a separate bio-
fluid that mimics its composition is required. 
For example, for interstitial fluid, blood serum 
or plasma can be applied as a pooled QC sample 
as the composition of blood serum/plasma and 
interstitial fluid are similar.

Although the majority of human-focused 
studies utilize biofluid samples, there are a 
minority of typically small studies that assess 
cell culture or tissue samples. Here, the prepa-
ration of a pooled QC sample as applied for 
biofluids is difficult and a number of options 
are available. For the investigation of mamma-
lian tissues, ‘waste’ tissue supplementary to that 
required for the study, but of similar composi-
tion and collected ethically, can be applied for 
QC sample preparation. Alternatively, com-
mercial sourcing of the same tissue type can 
be undertaken (e.g., The National Human 
Tissue Resource Center, PA, USA provides 
the ethical sourcing of a multitude of human 
tissues [101]). In extreme cases, where no other 
options are feasible, the same tissue type from 
a different species can be applied (e.g., for the 
study of human liver tissue, animal liver tissue 

from an appropriate source can be purchased).
Caution should always be taken when applying 
this option because of interspecies differences 
in tissues and this should always be the last 
resort. For the investigation of the intracellular 
metabolome of cells cultured in the labora-
tory, supplementary samples can be cultured 
to provide biomass to prepare a pooled QC 
sample. 

These studies applying cells or tissues will 
generally provide a pooled QC sample after 
sample preparation and not before; the varia-
tion observed in QC data is representative of 
data acquisition and data preprocessing only, 
and not sample preparation as well. To deter-
mine variability due to sample preparation, the 
use of technical replicates is probably the best 
approach. It is technically difficult to pool large 
masses of tissues and cells, and then subaliquot, 
without significant damage to or rupture of cell 
membranes, and the leakage of intracellular 
metabolites. Therefore, different aliquots of 
tissue are extracted separately and then each 
extract is combined to prepare the pooled QC 
sample. An alternative is to take small aliquots 
from each of the study sample extracts, combine 
and thoroughly mix to prepare a pooled QC 
sample. There are advantages and limitations to 
each of these options based on the closeness of 
QC sample composition to study samples and 
the processes for which technical variability will 
be determined.

�� The emergence of QC samples in 
untargeted studies
The incorporation of QC samples into untar-
geted metabolomic studies of mammals, includ-
ing the human population, has only recently 
emerged. The first applications were reported 
in 2006 from Sangster and colleagues at 
AstraZeneca in the UK [26] and in 2007 by van 
der Greef and co-workers in The Netherlands 
[41]. Although the incorporation of QC samples 
provides many advantages, as discussed below, 
surprisingly only a limited number of metabo-
lomic research groups worldwide include QC 
samples in their studies. These investigations 
include the study of urine [27,42,43], blood serum 
and plasma [3,14,36], cell cultures [44] and tissue 
extracts [45]. As a community, metabolomics 
researchers need to apply QC samples in their 
studies and report quantitative measures of 
precision in their research publications to pro-
vide increased confidence in the application of 
metabolomics by the scientific community.
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Why are QC samples applied in 
untargeted metabolomics studies?
The preparation of QC samples and their incor-
poration into untargeted metabolomics studies 
is not a simple process; it is time-consuming and 
technically demanding. Up to 35% of all injec-
tions in an analytical experiment can be QC 
sample-related, which defines the importance 
researchers place on their inclusion because of 
the reduction in subject-sample throughput. 
So why do we apply QC samples in untargeted 
metabolomics studies?

�� Equilibration of analytical platforms after 
routine maintenance
Routine maintenance of chromatographic and 
MS platforms is required in small- or large-scale 
studies as continued operation for the analysis 
of biological samples will inevitably lead to a 
significant degradation in performance. During 
the maintenance process, removal of sample resi-
dues is performed and this results in reactivation 
of active sites by removal of absorbed material. 
Following this routine maintenance, significant 
variation (of the same level as biological variabil-
ity) in measured parameters – including response 
and retention time – can be observed for the first 
three to ten injections [36,43]. This is a result of 
components of the sample being absorbed and 
blocking active sites; following this period of 
inactivation the performance of the platform 
‘equilibrates’ and analytical variation is observed 
to be lower than that from biological sources.

The level of drift observed before equilibration 
has occurred is not acceptable, and in experiments 
where study samples are analyzed from the first 
injection onwards, will result in the loss of repro-
ducible data for important study samples that are 
analyzed in the ‘equilibration’ period. As a com-
promise, QC samples can be repeatedly injected 
prior to the commencement of the analytical run 
in order to ‘condition’ or ‘equilibrate’ the system; 
these are nonprecious samples for which data 
acquired can be removed from the dataset before 
data preprocessing is performed and, therefore, do 
not impact on the data quality [23]. Generally, five 
to ten QC injections are performed at the start 
of each experiment, depending primarily on the 
analytical platform, but also on the sample type.

�� Correction of small levels of variation 
within & between analytical experiments
Although every effort is made during the analyti-
cal experiment to eliminate sources of variation, 
these are always present and are represented in the 

variation observed in acquired QC-response data. 
Increases and decreases in the measured response 
of a compositionally identical sample injected 
multiple times are observed and these changes 
can be different for diverse metabolites/metabolic 
features. 

As the logical assumption is that the data 
acquired for all QC samples should be identi-
cal, then data preprocessing algorithms can 
be applied to reduce the analytical variability 
observed while maintaining the biological vari-
ability inherent in the study samples. The first 
algorithm developed was QC-based robust locally 
estimated scatterplot smoothing (LOESS) signal 
correction (QC-RLSC), which was developed for 
application with blood serum samples as part of 
the Human Serum Metabolome in Health and 
Disease project [23]. The QC-RLSC algorithm 
has since been validated for a number of differ-
ent sample types, including urine, intracellular 
metabolomes, cell media (metabolic footprint) 
and tissue extracts [Dunn  WB, Unpublished Data]. 
QC-RLSC normalizes the response data for sub-
ject samples to the response data for QC samples. 
Simply, a low-order nonlinear LOESS is fitted 
to the QC data in respect to analysis order, fol-
lowed by interpolation of the correction curve to 
the study samples [23]. Other methods have also 
been developed [42,46–49] or are being developed 
[Broadhurst D, Unpublished Data].

Internal standards spiked into samples is 
another method that can be applied to reduce 
between-sample variability, in particular when an 
isotopic analogue of the metabolite can be applied 
(e.g., 13C

6
-glucose for glucose). This is routinely 

observed in targeted studies. However, it is experi-
mentally difficult to apply an internal standard 
for each of hundreds or thousands of metabolites 
detected in untargeted studies because of the 
cost of purchasing isotopic analogues for each 
metabolite and the limited qualitative knowl-
edge related to metabolome composition before 
sample preparation and data acquisition. A single 
internal standard can be applied to correct ana-
lytical variation for a group of metabolites that 
are either related (e.g., all are present in the same 
class of metabolites) or unrelated [50]. However, 
we believe that the use of QC samples to compen-
sate for analytical variation in untargeted studies 
is most appropriate.

�� Quantitative measurement of technical 
reproducibility
In targeted analytical methods, QC samples are 
applied to determine the accuracy and precision 



The importance of experimental design & QC samples in untargeted metabolomic studies  | Review

www.future-science.com 2259future science group

of the analytical method for each metabolite 
assayed; the exact quantitative composition of 
the QC sample(s) is known to allow the determi-
nation of accuracy (otherwise known as recov-
ery) by comparison to calibration curve data. In 
untargeted studies, the quantitative composition 
is not known and no calibration curve data are 
acquired. Therefore, only analytical precision 
can be determined through the incorporation of 
QC samples in metabolomic analyses.

QC samples are analyzed intermittently 
throughout the analytical experiment after the 
initial ‘equilibration’ phase. As these are theo-
retically the identical sample analyzed multiple 
times, the data acquired can be used to determine 
the within-experiment precision (where one ana-
lytical experiment has been performed) or the 
within-study precision (where data from multiple 
analytical experiments have been integrated). 
Following signal correction, calculation of the 
relative SD (RSD) for each separate metabolite/
metabolic feature and percentage of QC samples 
in which the metabolite/metabolic feature was 
detected is applied for QA. 

The percentage detection rate defines whether 
the metabolite is consistently detected; if not, 
then this metabolite/feature should be removed 
from the dataset. The authors typically apply 
an acceptance criteria of 50%; if the metabo-
lite is detected in fewer than five out of ten QC 
samples, then the data for that metabolite/meta-
bolic feature is removed [23]. The RSD provides a 
univariate measure of intra-experiment precision 
for each metabolite/metabolic feature separately 
and allows data to be compared with acceptance 
criteria; specifically, whether that metabolite 
passes the acceptance criteria. In targeted stud-
ies applied in the pharmaceutical industry, the 
FDA specify the following (RSD is equivalent to 
coefficient of variation [CV]) [38]: “The precision 
of an analytical method describes the closeness of 
individual measures of an analyte when the pro-
cedure is applied repeatedly to multiple aliquots of 
a single homogeneous volume of biological matrix. 
Precision should be measured using a minimum of 
five determinations per concentration. The preci-
sion determined at each concentration level should 
not exceed 15% of the CV except for the LLOQ, 
where it should not exceed 20% of the CV.” 

For biomarkers, the FDA guidelines are 
slightly more relaxed (20 and 30%, respectively) 
and these may be more appropriate for metabo-
lomic studies [51]. However, clearly the less vari-
able the QC data are for a particular metabolite 
the greater the confidence that the analyst can 

have in it. In untargeted metabolomics stud-
ies, hundreds to thousands of metabolites are 
detected with many present at low concentra-
tions. Therefore, and to take into account these 
differences between targeted and untargeted 
methods, the authors apply the following ana-
lytical, platform-dependent acceptance criteria: 
RSD < 20% for UPLC–MS and RSD < 30% for 
GC–MS [23,36,50]. The higher acceptance limit 
for GC–MS reflects the greater number of pro-
cessing steps for GC–MS studies (e.g., chemical 
derivatization) and the lower injection volume 
and reproducibility of GC injectors that cre-
ates a greater between-sample variation. The 
authors apply these criteria for all sample types 
as, in our hands, a number of unpublished stud-
ies have shown similar levels of reproducibility 
for multiple sample types, including urine, cell 
media (metabolic footprint), cell extracts and 
tissue extracts. This process provides a univariate 
filtering step to remove nonreproducible meta-
bolic features before data analysis; only data for 
nonreproducible metabolites are removed. In 
the authors experience, 10–30% of all detected 
metabolic features are removed from the dataset 
when applying this QA process, dependent on 
analytical platform, sample type and temporal 
changes in instrument or researcher [3,45]. The 
authors recommend that the median and quar-
tile ranges for the RSD for all metabolic features 
are reported in the publication of results. 

The univariate process described above 
requires that significant data processing and a 
rapid QA process is not performed following 
data acquisition. To provide a simple and quick 
qualitative determination of the data quality 
for a single analytical experiment, multivariate 
principal-components analysis can be performed 
[26]. Principal-components analysis score plots 
provide a representation of the variability within 
the data acquired; two data points close together 
are similar (there is minimal variation between 
the data acquired for them) and two data points 
far apart are less similar (there is a larger level of 
variation between the data acquired for the two 
samples). The variation between QC samples 
(the same sample injected multiple times) should 
be lower than the variation between subject sam-
ples (different biological samples). Clustering of 
QC sample data points should be more com-
pact than the distribution of biological samples 
(assuming that there is indeed some biological 
variability). An example is shown in Figure 2 
for a clinical study composed of two sample 
classes (cases and controls). If the distribution 
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of data points for QC and biological samples 
are similar then the data must be treated with 
caution. In most applications, the distribution of 
QC samples is less than for biological samples; 
however, in cases where the intraclass varia-
tion for two or more classes is small, then the 
variation observed for QC and subject samples 
will be similar. When similar levels of variation 
are observed, but are not expected (e.g.,  the 
researcher expects large intraclass variation), 
reanalysis of the samples or their repreparation 
and analysis is recommended. This provides a 
rapid check of the quality of the data on the day 
of analysis.

�� To provide integration of data from 
multiple analytical experiments
As discussed above, step-based changes in 
response can be observed between analytical 
experiments as a result of routine or annual 
maintenance. This is a significant hurdle to 
overcome in large-scale studies where the 

integration of data from multiple analytical 
experiments is essential to provide statistical 
robustness in comparison with applying data 
from single analytical experiments.

In studies where the same pooled QC sample 
is applied for all analytical experiments, then the 
data acquired for QC samples can be applied 
simply to integrate data from multiple analyti-
cal batches into a single dataset. The protocols 
applied have been described previously [23].

QC sample incorporation into 
analytical experiments
Thus far, we have discussed why it is impor-
tant to include QC samples in metabolomic 
studies and how their inclusion can be applied 
to improve and assess the quality of the data. 
Now we will describe how QC samples are 
incorporated into the analytical experiment.

A typical run order applied by the authors is 
shown in Figure 3 for GC–MS and UPLC–MS. 
The first nth injections (n = 5 for GC–MS and 
n = 10 for UPLC–MS) are applied to ‘equili-
brate’ the analytical system following routine 
maintenance. Data for injections one to three 
and one to eight are removed from the data-
set prior to data processing and data analysis 
for GC–MS and UPLC–MS, respectively. QC 
samples are then intermittently injected through 
the analytical experiment with two QC samples 
at the end of the analytical experiment. Two, 
and not one, QC injections are performed at the 
end of the experiment to eliminate the impact 
on signal correction if there is one sample-injec-
tion or instrument failure; the absence of a QC 
sample at the end of the experiment significantly 
impacts on the QC-RLSC algorithm applied.

The frequency at which QC samples are 
injected is dependent on the data preprocess-
ing steps to be performed. Where QC samples 
are to be applied to quantify precision within a 
single analytical experiment only, then analysis 
of a QC sample every tenth injection is com-
monly applied and is appropriate [27]. Where 
QC samples are to be applied for signal correc-
tion and to quantify precision, more frequent 
injections are required, typically every third to 
seventh injection [23]. The greater frequency 
is required so as to allow the acquisition of 
sufficient QC data to ensure the QC-RLSC 
algorithm operates efficiently and robustly.

Conclusion & future perspective
The variability observed in the environment 
and human genotype has a significant impact 
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Figure 2. A principal-components analysis scores plot showing an 
example of the expected variation for QC and study (case and control) 
samples. The tighter clustering of QC samples (the distribution is defined by the 
oval) compared with the study samples describes that the biological variation 
related to the study samples is greater than the technical variation observed for 
the replicate injection of the same pooled QC sample. Data were collected for a 
biomarker study of serum applying UPLC–MS. A Waters Acquity UPLC™ system 
coupled to a Thermo Scientific LTQ Orbitrap Velos™ MS was applied to acquire 
the data using a previously defined method [23].
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on the phenotype of humans. In laboratory-
based scientific studies, this variation is con-
trolled to minimize its impact on the biological 
variation observed. In these studies, the sample 
size is small per class (generally fewer than 20). 
In the study of human populations outside the 
laboratory, control of the genotype and envi-
ronment is minimal. For this reason, the sample 
size required to acquire statistically valid results 
is much higher; hundreds or thousands of sub-
jects are required. This provides significant 
hurdles in large-scale untargeted metabolomic 
studies of the human population that apply MS 
platforms. 

In this paper, we have described recent 
innovative advances in experimental design, 
the inclusion of QC samples and data pre-
processing algorithms that have provided the 
ability to perform these large-scale untargeted 
MS-focused studies and provide robust data 
for data analysis and biological interpretation. 
These methods have been developed as part of 
the  Human Serum Metabolome in Health and 
Disease project, a study to define the normal 
serum metabolome of healthy individuals [102]. 
To date, the project has acquired data on over 
3000 different subjects and discussions on data 
for 1200 subjects have been presented recently 
[23]. More than 4400 metabolic features were 
detected applying UPLC–MS, which we esti-
mate to be between 1000 and 2000 metabo-
lites, although current limitations in untargeted 
metabolomics do not allow accurate identifi-
cation of all metabolites (see [22] for a review 
on the limitations of metabolite identification 
in untargeted metabolomics). 157 metabolites 
were detected applying GC–MS. Without 
the innovations described in this paper, this 
project, and many other projects undertaken 
by the authors, would not have been success-
ful or would not have provided robust data for 
biological interpretation. Before these innova-
tions, data for large-scale untargeted discovery 
studies could only be acquired using NMR 
spectroscopy [19,25].

All of the processes described would not 
be possible without the use of QC samples. 
Signal correction opens up for the first time 
the ability to acquire and apply reproducible 
MS data collected in multiple analytical experi-
ments in untargeted metabolomics studies for 
large-scale studies of the human population. 
The authors hope that the readers of this article 
will endeavor to incorporate the experimen-
tal design, QC samples and signal correction 

processes described here in their future metabo-
lomic studies to increase the impact of metabo-
lomics through the assurance of the quality of 
the data to the scientific community; whether 
single or multiple analytical experiments are 
applied as part of a biological study. Only with 
the community-wide acceptance of QC samples 
and QA procedures can the comparison of dif-
ferent datasets from across the research-based 
community be performed. For the first time, 
this would permit the analysis of metabolomics 
data on a global scale and enable studies of 
epidemiological proportions of the human race.
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Figure 3. Examples of typical injection orders for GC–MS and UPLC–MS.
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Executive summary

Large-scale studies of the human population

�� The study of human biofluid metabolomes provides a phenotypic and dynamic picture of intra- and inter-individual variability in the 
human population.

�� Large sample sizes are required to statistically define the inherent variability in the human population.

Experimental design in large-scale studies of the human population

�� The determination of global (or untargeted) metabolic profiles of the type required for metabolomic studies, particularly large-scale, 
require long-term investigations involving hundreds to thousands of samples and requires very careful control if analytical variability is to 
be monitored and controlled.

�� Many experimental considerations are required in designing a large-scale study of the human population.

�� These include reproducibility of sample collection across single or multiple sites, randomization during sample preparation and data 
acquisition, the design of multiple analytical experiments and QC/quality assurance processes.

QC samples in metabolomics

�� There are numerous sources of analytical variability in MS-based analytical methods (within and between run), such as changes in 
analyte response and retention time, which can result in poor data quality.

�� A pragmatic approach to monitoring data quality is the use of QC samples prepared from the sample being profiled and analyzed at a 
regular interval throughout the analysis.

�� QC samples can be applied to condition chromatography and MS instruments following maintenance, in order to correct for small 
levels of variation, to quantitatively measure technical reproducibility and to integrate data from different analytical experiments.

�� Data from the QC samples can be used to reject analytical batches where the variability is too high.
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